Subgroup ($H$) information
Description: | $C_3^2:(C_2\times C_8)$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$a^{2}, c^{4}, b^{2}c^{8}, c^{9}, a^{4}, c^{6}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $D_4.F_9$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times F_9).C_2^3$ |
$\operatorname{Aut}(H)$ | $D_4\times F_9:C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2\times F_9$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_4$ | |||
Normalizer: | $D_4.F_9$ | |||
Minimal over-subgroups: | $C_6^2.(C_2\times C_4)$ | $C_4.F_9$ | $C_3^2:\OD_{32}$ | |
Maximal under-subgroups: | $C_{12}:S_3$ | $C_3^2:C_8$ | $C_3^2:C_8$ | $C_2\times C_8$ |
Other information
Möbius function | $2$ |
Projective image | $C_6^2:C_8$ |