Subgroup ($H$) information
Description: | $C_3\times C_6$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$b^{3}, b^{2}c^{8}, c^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $D_4.F_9$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times F_9).C_2^3$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $\SD_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$W$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_6^2$ | ||
Normalizer: | $C_6^2.C_4$ | ||
Normal closure: | $D_4\times C_3^2$ | ||
Core: | $C_3^2$ | ||
Minimal over-subgroups: | $C_6^2$ | ||
Maximal under-subgroups: | $C_3^2$ | $C_6$ | $C_6$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $D_4.F_9$ |