Properties

Label 576.5151.32.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{6}, b^{2}c^{8}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_4.F_9$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2:C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times F_9).C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\SD_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_8$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$D_4\times C_3^2$
Normalizer:$D_4.F_9$
Minimal over-subgroups:$C_6:S_3$$C_3\times C_{12}$$C_3^2:C_4$$C_6^2$$C_3^2:C_4$
Maximal under-subgroups:$C_3^2$$C_6$

Other information

Möbius function$0$
Projective image$C_6^2:C_8$