Properties

Label 576.5065.6.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 0 & 41 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 42 & 43 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 13 & 72 \\ 48 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{12}:S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^6.(D_6\times S_4)$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times S_3^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6:S_3$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{12}:S_4$
Complements:$S_3$
Minimal over-subgroups:$A_4\times D_{12}$$D_{12}:D_4$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2^2\times D_6$$C_2^2\times D_4$

Other information

Möbius function$3$
Projective image$D_6:S_4$