Properties

Label 576.5065.12.q1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:D_8$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 45 \\ 72 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 41 \end{array}\right), \left(\begin{array}{rr} 13 & 72 \\ 48 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{12}:S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6:D_8$
Normal closure:$D_{12}:S_4$
Core:$D_{12}$
Minimal over-subgroups:$D_{12}:S_3$$C_6:D_8$
Maximal under-subgroups:$D_{12}$$C_3\times D_4$$C_3:C_8$$D_8$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$2$
Projective image$D_6:S_4$