Subgroup ($H$) information
Description: | $C_6.C_2^3$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$b^{3}, d^{2}, c, d^{3}, b^{6}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_{12}.(C_2\times S_4)$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_3:C_4$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3:D_6^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $S_3\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_2^2\times C_4$ | |||
Normalizer: | $C_{12}.(C_2\times S_4)$ | |||
Minimal over-subgroups: | $A_4\times C_3:C_4$ | $C_{12}:C_2^3$ | ||
Maximal under-subgroups: | $C_2^2\times C_6$ | $C_6:C_4$ | $C_6:C_4$ | $C_2^2\times C_4$ |
Other information
Möbius function | $0$ |
Projective image | $D_6.S_4$ |