Properties

Label 576.3648.6.m1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4:C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad^{3}, c^{3}d^{6}, b^{2}, b, d^{6}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6.(D_4\times C_{12})$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}\times S_3$
$\operatorname{Aut}(H)$ $C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{res}(S)$$C_2^7$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$(C_2\times C_4^2):C_6$
Normal closure:$C_6^2.D_4$
Core:$C_2^2\times C_{12}$
Minimal over-subgroups:$C_6^2.D_4$$(C_2\times C_4^2):C_6$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_4:C_{12}$$C_4:C_{12}$$C_2^2.D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_2\times D_6$