Properties

Label 576.3648.36.d1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $a, b^{2}, c^{3}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_6.(D_4\times C_{12})$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}\times S_3$
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$(C_2\times C_4^2):C_6$
Normal closure:$C_2^2\times D_6$
Core:$C_2^3$
Minimal over-subgroups:$C_2^2\times D_6$$C_2^3\times C_6$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$
Maximal under-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$2$
Projective image$C_6\times D_6$