Properties

Label 576.3648.2.a1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{6}, c^{3}, d^{3}, d^{4}, b^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6.(D_4\times C_{12})$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}\times S_3$
$\operatorname{Aut}(H)$ $C_3:(C_2^5.C_2^5)$
$\operatorname{res}(\operatorname{Aut}(G))$$D_6\times C_2^6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_6.(D_4\times C_{12})$
Minimal over-subgroups:$C_6.(D_4\times C_{12})$
Maximal under-subgroups:$C_6^2:C_2^2$$C_2\times C_6\times C_{12}$$C_6^2:C_4$$D_6:C_{12}$$D_6:C_{12}$$D_6:C_{12}$$D_6:C_{12}$$C_2^2.D_{12}$$C_2^3:C_{12}$

Other information

Möbius function$-1$
Projective image$C_2\times D_6$