Subgroup ($H$) information
| Description: | $C_2\times C_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$d^{6}, c, b^{2}d^{8}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_6^2:C_4:C_4$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:S_3.C_2.C_2^5.C_2^3$ |
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $(C_6\times C_{12}):C_4$ |