Properties

Label 576.2036.192.a1.a1
Order $ 3 $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $b^{2}d^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_6^2:C_4:C_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:S_3.C_2.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6^2:C_4$
Normalizer:$C_6^2.D_4$
Normal closure:$C_3^2$
Core:$C_1$
Minimal over-subgroups:$C_3^2$$C_6$$C_6$$C_6$$C_6$$C_6$$S_3$
Maximal under-subgroups:$C_1$
Autjugate subgroups:576.2036.192.a1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_6^2:C_4:C_4$