Properties

Label 576.1897.32.b1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, d, c^{16}d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_8.\SOPlus(4,2)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2.C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$S_3\times C_{24}$
Normal closure:$D_6:S_3$
Core:$C_3^2$
Minimal over-subgroups:$C_6\times S_3$
Maximal under-subgroups:$C_3^2$$C_6$$S_3$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_8.\SOPlus(4,2)$