Properties

Label 57120.c.476.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{120}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a^{7140}, a^{45696}, a^{14280}, a^{19040}, a^{28560}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{57120}$
Order: \(57120\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
Exponent: \(57120\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{476}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Automorphism Group: $C_2^2\times C_{48}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^2\times C_{48}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_4\times C_8\times C_{48}$
$\operatorname{Aut}(H)$ $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_{57120}$
Normalizer:$C_{57120}$
Minimal over-subgroups:$C_{2040}$$C_{840}$$C_{240}$
Maximal under-subgroups:$C_{60}$$C_{40}$$C_{24}$

Other information

Möbius function not computed
Projective image not computed