Subgroup ($H$) information
Description: | $C_{1673}$ |
Order: | \(1673\)\(\medspace = 7 \cdot 239 \) |
Index: | \(34\)\(\medspace = 2 \cdot 17 \) |
Exponent: | \(1673\)\(\medspace = 7 \cdot 239 \) |
Generators: |
$b^{478}, b^{14}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,239$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
Description: | $C_{1673}:C_{34}$ |
Order: | \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \) |
Exponent: | \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.
Quotient group ($Q$) structure
Description: | $C_{34}$ |
Order: | \(34\)\(\medspace = 2 \cdot 17 \) |
Exponent: | \(34\)\(\medspace = 2 \cdot 17 \) |
Automorphism Group: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{239}:(C_2\times C_{714})$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{714}$, of order \(1428\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 17 \) |
$W$ | $C_{17}$, of order \(17\) |
Related subgroups
Centralizer: | $C_{3346}$ | |
Normalizer: | $C_{1673}:C_{34}$ | |
Complements: | $C_{34}$ | |
Minimal over-subgroups: | $C_{1673}:C_{17}$ | $C_{3346}$ |
Maximal under-subgroups: | $C_{239}$ | $C_7$ |
Other information
Möbius function | $1$ |
Projective image | $C_{239}:C_{34}$ |