Properties

Label 56882.2.34.a1.a1
Order $ 7 \cdot 239 $
Index $ 2 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1673}$
Order: \(1673\)\(\medspace = 7 \cdot 239 \)
Index: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(1673\)\(\medspace = 7 \cdot 239 \)
Generators: $b^{478}, b^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,239$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{1673}:C_{34}$
Order: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.

Quotient group ($Q$) structure

Description: $C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{239}:(C_2\times C_{714})$
$\operatorname{Aut}(H)$ $C_2\times C_{714}$, of order \(1428\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 17 \)
$W$$C_{17}$, of order \(17\)

Related subgroups

Centralizer:$C_{3346}$
Normalizer:$C_{1673}:C_{34}$
Complements:$C_{34}$
Minimal over-subgroups:$C_{1673}:C_{17}$$C_{3346}$
Maximal under-subgroups:$C_{239}$$C_7$

Other information

Möbius function$1$
Projective image$C_{239}:C_{34}$