Properties

Label 56882.1.238.a1.a1
Order $ 239 $
Index $ 2 \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{239}$
Order: \(239\)
Index: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Exponent: \(239\)
Generators: $a^{238}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $239$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{56882}$
Order: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17,239$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{238}$
Order: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{5712}$
$\operatorname{Aut}(H)$ $C_{238}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{56882}$
Normalizer:$C_{56882}$
Complements:$C_{238}$
Minimal over-subgroups:$C_{4063}$$C_{1673}$$C_{478}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-1$
Projective image$C_{238}$