Properties

Label 56644.c.7.a1
Order $ 2^{2} \cdot 7 \cdot 17^{2} $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{119}:C_{68}$
Order: \(8092\)\(\medspace = 2^{2} \cdot 7 \cdot 17^{2} \)
Index: \(7\)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Generators: $b^{85}, b^{7}, a^{238}, a^{28}, a^{119}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{119}:C_{476}$
Order: \(56644\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17^{2} \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{119}.C_6^2.C_8^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{119}.C_6.C_8^2.C_2^3$
$W$$D_{119}$, of order \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_{119}:C_{476}$
Complements:$C_7$ $C_7$
Minimal over-subgroups:$C_{119}:C_{476}$
Maximal under-subgroups:$C_{17}\times C_{238}$$C_{17}:C_{68}$$C_{119}:C_4$$C_7:C_{68}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_7\times D_{119}$