Properties

Label 56644.c.476.d1
Order $ 7 \cdot 17 $
Index $ 2^{2} \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Index: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Generators: $b^{85}, b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{119}:C_{476}$
Order: \(56644\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17^{2} \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{476}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Automorphism Group: $C_2^2\times C_{48}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^2\times C_{48}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{119}.C_6^2.C_8^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{119}\times C_{238}$
Normalizer:$C_{119}:C_{476}$
Complements:$C_{476}$
Minimal over-subgroups:$C_{17}\times C_{119}$$C_7\times C_{119}$$C_{238}$
Maximal under-subgroups:$C_{17}$$C_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{119}:C_{476}$