Properties

Label 5600.f.4.f1.a1
Order $ 2^{3} \cdot 5^{2} \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{70}:C_{10}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 90 & 0 \\ 0 & 153 \end{array}\right), \left(\begin{array}{rr} 79 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 170 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 86 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 128 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{280}:C_{10}$
Order: \(5600\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{140}.C_6.C_2^3.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_7:(C_2\times C_6\times F_5)$
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$D_{140}:C_{10}$
Normal closure:$D_{140}:C_{10}$
Core:$C_{10}\times C_{70}$
Minimal over-subgroups:$D_{140}:C_{10}$
Maximal under-subgroups:$C_{10}\times C_{70}$$C_5\times D_{70}$$C_{35}:C_{20}$$C_{35}:D_4$$C_{35}:D_4$$C_{10}\wr C_2$
Autjugate subgroups:5600.f.4.f1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times D_{140}$