Properties

Label 560.158.2.c1.b1
Order $ 2^{3} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{140}$
Order: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $ab, c^{70}, c^{84}, c^{35}, c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times D_{140}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_{70}.(C_2^3\times C_{12})$
$\card{\operatorname{res}(S)}$\(6720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_{140}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times D_{140}$
Maximal under-subgroups:$D_{70}$$D_{70}$$C_{140}$$D_{28}$$D_{20}$
Autjugate subgroups:560.158.2.c1.a1560.158.2.c1.c1560.158.2.c1.d1

Other information

Möbius function$-1$
Projective image$C_2\times D_{70}$