Subgroup ($H$) information
Description: | $D_{140}$ |
Order: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Generators: |
$ab, c^{70}, c^{84}, c^{35}, c^{20}$
|
Derived length: | $2$ |
The subgroup is normal, maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_2\times D_{140}$ |
Order: | \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{70}.(C_2^3\times C_6).C_2^4$ |
$\operatorname{Aut}(H)$ | $C_{70}.(C_2^3\times C_{12})$ |
$\card{\operatorname{res}(S)}$ | \(6720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times D_{70}$ |