Properties

Label 559872000.j.12960._.M
Order $ 2^{6} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.S_5$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Index: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,9,4,7)(2,3,10,5)(12,20,18,16)(13,19,15,14), (21,26)(22,23)(25,27)(29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $A_6^3.D_6$
Order: \(559872000\)\(\medspace = 2^{11} \cdot 3^{7} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$12960$
Möbius function not computed
Projective image not computed