Properties

Label 559872.bi.24.F
Order $ 2^{5} \cdot 3^{6} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: not computed
Generators: $a^{3}, e^{3}, d^{2}e^{4}g^{2}, f^{2}g^{2}, f^{3}g^{3}, d^{4}e^{2}, c^{4}e^{3}f^{4}g, d^{3}f^{3}, e^{2}g^{2}, g^{3}, b^{2}f^{2}g^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6\wr D_6$
Order: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^5.C_2^6.C_2$
$\operatorname{Aut}(H)$ not computed
$W$$C_6^4:D_6$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6\wr D_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed