Properties

Label 550.7.55.b1.b1
Order $ 2 \cdot 5 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}b^{10}, a^{2}b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5\times F_{11}$
Order: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$C_5\times C_{10}$
Normal closure:$F_{11}$
Core:$C_1$
Minimal over-subgroups:$F_{11}$$C_5\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:550.7.55.b1.a1550.7.55.b1.c1550.7.55.b1.d1550.7.55.b1.e1

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$C_5\times F_{11}$