Properties

Label 544.38.16.d1.b1
Order $ 2 \cdot 17 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a^{2}b, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{34}.C_4^2$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^6\times C_{16}).C_2)$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1088\)\(\medspace = 2^{6} \cdot 17 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{68}$
Normalizer:$C_{34}.C_4^2$
Minimal over-subgroups:$C_2\times C_{34}$$C_2\times C_{34}$$C_2\times C_{34}$
Maximal under-subgroups:$C_{17}$$C_2$
Autjugate subgroups:544.38.16.d1.a1

Other information

Möbius function$0$
Projective image$C_{34}.D_4$