Properties

Label 5400.q.2.d1.a1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, d^{3}e^{12}, c^{2}d^{10}, e^{10}, bd^{12}, e^{3}, d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{15}^2:(C_2\times D_6)$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2.\He_3.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$W$$S_3\times C_5^2:D_6$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:(C_2\times D_6)$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_{15}^2:(C_2\times D_6)$
Maximal under-subgroups:$C_{15}^2:C_6$$C_{15}^2:S_3$$C_{15}^2:S_3$$C_{15}^2:C_2^2$$C_3\times C_5^2:D_6$$C_3\times C_5^2:D_6$$C_3^2:D_6$

Other information

Möbius function$-1$
Projective image$C_{15}^2:(C_2\times D_6)$