Properties

Label 540.76.2.a1.a1
Order $ 2 \cdot 3^{3} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times \He_3$
Order: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Index: \(2\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $d^{15}, cd^{20}, d^{6}, b, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:D_{30}$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{30}:C_{12}:\GL(2,3)$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times C_3^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times C_3^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{30}$
Normalizer:$C_3^2:D_{30}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_3^2:D_{30}$
Maximal under-subgroups:$C_5\times \He_3$$C_3\times C_{30}$$C_3\times C_{30}$$C_3\times C_{30}$$C_3\times C_{30}$$C_2\times \He_3$

Other information

Möbius function$-1$
Projective image$C_3:D_{15}$