Properties

Label 540.60.90.b1.c1
Order $ 2 \cdot 3 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{15}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_6^2.C_{15}$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times A_4).D_6.C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6\times C_{30}$
Normalizer:$C_6\times C_{30}$
Normal closure:$C_6^2$
Core:$C_1$
Minimal over-subgroups:$C_{30}$$C_3\times C_6$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$
Autjugate subgroups:540.60.90.b1.a1540.60.90.b1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_6^2.C_{15}$