Properties

Label 540.49.36.b1.a1
Order $ 3 \cdot 5 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $d^{10}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\He_3:D_{10}$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times C_3^2:\GL(2,3)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3\times C_{15}$
Normalizer:$C_{15}:D_6$
Normal closure:$C_3\times C_{15}$
Core:$C_5$
Minimal over-subgroups:$C_3\times C_{15}$$C_3\times D_5$$C_5\times S_3$$D_{15}$
Maximal under-subgroups:$C_5$$C_3$
Autjugate subgroups:540.49.36.b1.b1540.49.36.b1.c1540.49.36.b1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$\He_3:D_{10}$