Properties

Label 5376.bv.24.a1.a1
Order $ 2^{5} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times F_8$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $\langle(2,11)(3,12)(4,10)(5,14), (1,13,2,4,14,8,12)(3,9,6,11,10,5,7), (15,16,17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4\times C_2^3.\GL(3,2)$
Order: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.\GL(3,2)$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$W$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$F_8:C_{12}$
Normal closure:$C_4\times C_2^3.\GL(3,2)$
Core:$C_2^3\times C_4$
Minimal over-subgroups:$F_8:C_{12}$
Maximal under-subgroups:$C_2\times F_8$$C_2^3\times C_4$$C_{28}$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$C_2^3.\GL(3,2)$