Properties

Label 5376.bv.16.a1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,3,5)(2,4,7)(8,11,10)(9,12,14)(15,17)(16,18), (2,11)(3,12)(4,10)(5,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_4\times C_2^3.\GL(3,2)$
Order: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.\GL(3,2)$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$F_8:C_{12}$
Normal closure:$C_2^4.\PSL(2,7)$
Core:$C_2^4$
Minimal over-subgroups:$C_2^4.\PSL(2,7)$$F_8:C_{12}$
Maximal under-subgroups:$F_8:C_3$$C_2\times F_8$$C_2^2\times A_4$$C_7:C_6$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$1$
Projective image$C_2^4.\PSL(2,7)$