Properties

Label 5376.bl.336.b1
Order $ 2^{4} $
Index $ 2^{4} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(2\)
Generators: $\langle(1,4)(2,15)(3,10)(5,8)(6,14)(7,13)(9,11)(12,16), (1,11)(2,7)(3,5)(4,9)(6,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^4:F_8:C_6$
Order: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $F_8:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:F_8:C_6$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^4:F_8:C_6$
Complements:$F_8:C_6$
Minimal over-subgroups:$C_2\times F_8$$C_2^2\times A_4$$C_2^5$$C_2^2\times D_4$$C_2^2\times D_4$
Maximal under-subgroups:$C_2^3$$C_2^3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$56$
Projective image$C_2^4:F_8:C_6$