Properties

Label 5328.a.36.d1.b1
Order $ 2^{2} \cdot 37 $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{37}:C_4$
Order: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Generators: $a^{9}b^{2}, a^{18}b^{88}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_4\times F_{37}$
Order: \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
Exponent: \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{36}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{74}.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$W$$F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times F_{37}$
Complements:$C_{36}$ $C_{36}$ $C_{36}$ $C_{36}$
Minimal over-subgroups:$C_{37}:C_{12}$$C_{74}:C_4$
Maximal under-subgroups:$D_{37}$$C_4$
Autjugate subgroups:5328.a.36.d1.a15328.a.36.d1.c15328.a.36.d1.d1

Other information

Möbius function$0$
Projective image$C_4\times F_{37}$