Properties

Label 532400.n.20._.A
Order $ 2^{2} \cdot 5 \cdot 11^{3} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{11}^3:C_{10}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 3 & 10 & 0 \\ 5 & 3 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 2 & 2 & 4 \\ 7 & 10 & 3 & 2 \\ 2 & 0 & 3 & 9 \\ 0 & 2 & 4 & 3 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 10 & 7 \\ 0 & 6 & 5 & 8 \\ 1 & 7 & 0 & 7 \\ 5 & 9 & 5 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 5 & 10 & 5 \\ 2 & 2 & 4 & 10 \\ 3 & 9 & 0 & 6 \\ 3 & 3 & 9 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ 6 & 6 & 8 & 0 \\ 6 & 6 & 7 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{110}:F_{11}.D_{22}$
Order: \(532400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(42592000\)\(\medspace = 2^{8} \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_{11}^3.C_5.C_{10}^2.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed