Properties

Label 53240.bd.4.c1
Order $ 2 \cdot 5 \cdot 11^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{110}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{11}d, b^{2}, cd^{8}, a^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{11}\times C_{22}:F_{11}$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{10}.C_{10}^2.C_2$
$W$$C_{22}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$D_{11}\times C_{22}:F_{11}$
Complements:$C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_{11}\times C_{22}:F_{11}$$D_{11}\times C_{11}:F_{11}$
Maximal under-subgroups:$C_{11}^2:C_{55}$$C_{11}^2:C_{22}$$C_{11}:F_{11}$$C_{11}\times F_{11}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$D_{11}\times C_{22}:F_{11}$