Properties

Label 53240.bd.10.c1
Order $ 2^{2} \cdot 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:D_{22}$
Order: \(5324\)\(\medspace = 2^{2} \cdot 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}b, b^{2}, cd^{12}, d^{11}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{11}\times C_{22}:F_{11}$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{11}^3.C_{10}.\PSL(3,11)$
$W$$D_{11}\times C_{11}:F_{11}$, of order \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{11}\times C_{22}:F_{11}$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_2\times C_{11}^3:C_{10}$$C_{22}:D_{11}^2$
Maximal under-subgroups:$C_{11}^2\times C_{22}$$C_{11}^3:C_2$$C_{11}:D_{22}$$C_{11}:D_{22}$$C_{11}:D_{22}$$C_{11}:D_{22}$$C_{11}:D_{22}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_{11}\times C_{11}:F_{11}$