Properties

Label 53240.bb.440.b1
Order $ 11^{2} $
Index $ 2^{3} \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Exponent: \(11\)
Generators: $c, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}^3:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Automorphism Group: $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{10}^2.C_5.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{11}^2\times C_{22}$
Normalizer:$C_{11}^3:(C_5\times Q_8)$
Complements:$C_{44}.C_{10}$
Minimal over-subgroups:$C_{11}^3$$C_{11}^2:C_5$$C_{11}\times C_{22}$
Maximal under-subgroups:$C_{11}$$C_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{11}^3:(C_5\times Q_8)$