Properties

Label 52800.f.1056.d1.a1
Order $ 2 \cdot 5^{2} $
Index $ 2^{5} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{10}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 6 & 7 \\ 3 & 3 & 0 & 6 \\ 4 & 2 & 8 & 10 \\ 9 & 4 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 2 & 9 & 10 & 8 \\ 5 & 9 & 0 & 10 \\ 3 & 7 & 10 & 2 \\ 4 & 3 & 6 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4:C_{10}^2$
Normalizer:$C_4:C_{10}^2$
Normal closure:$\GL(2,11)$
Core:$C_5$
Minimal over-subgroups:$C_5\times F_{11}$$C_5\times F_{11}$$C_{10}^2$$C_{10}^2$$C_{10}^2$
Maximal under-subgroups:$C_5^2$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$

Other information

Number of subgroups in this conjugacy class$132$
Möbius function$0$
Projective image$D_4.\PGL(2,11)$