Properties

Label 5280.z.40.d1.b2
Order $ 2^{2} \cdot 3 \cdot 11 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_{11}$
Order: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $a, b^{20}d^{11}, d^{4}, b^{15}d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
$W$$S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6\times F_{11}$
Normal closure:$D_{11}\times \GL(2,3)$
Core:$D_{11}$
Minimal over-subgroups:$S_3\times F_{11}$$S_3\times D_{22}$
Maximal under-subgroups:$C_3\times D_{11}$$S_3\times C_{11}$$D_{33}$$D_{22}$$D_6$
Autjugate subgroups:5280.z.40.d1.a15280.z.40.d1.a25280.z.40.d1.b1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$F_{11}\times \GL(2,3)$