Properties

Label 5280.z.330.d1.a1
Order $ 2^{4} $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ad^{11}, b^{15}d^{11}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times \SD_{16}$
Normal closure:$D_{11}\times \GL(2,3)$
Core:$C_2$
Minimal over-subgroups:$C_{11}:\SD_{16}$$C_5\times \SD_{16}$$C_2\times \SD_{16}$
Maximal under-subgroups:$D_4$$Q_8$$C_8$

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$0$
Projective image$S_4\times F_{11}$