Properties

Label 5280.z.22.c1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \GL(2,3)$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a, d^{22}, b^{20}d^{11}, cd^{22}, b^{6}, d^{11}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times \GL(2,3)$
Normal closure:$\SL(2,3):F_{11}$
Core:$\SL(2,3)$
Minimal over-subgroups:$\SL(2,3):F_{11}$$C_{10}\times \GL(2,3)$
Maximal under-subgroups:$C_5\times \SL(2,3)$$C_5\times \SD_{16}$$S_3\times C_{10}$$\GL(2,3)$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$S_4\times F_{11}$