Properties

Label 5280.z.15.a1.a1
Order $ 2^{5} \cdot 11 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SD_{16}\times D_{11}$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a, d^{4}, d^{11}, cd^{22}, b^{15}, d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_{22}.(C_2^4\times C_{10})$
$W$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SD_{16}\times F_{11}$
Normal closure:$D_{11}\times \GL(2,3)$
Core:$Q_8\times D_{11}$
Minimal over-subgroups:$\SD_{16}\times F_{11}$$D_{11}\times \GL(2,3)$
Maximal under-subgroups:$Q_8\times D_{11}$$D_4\times D_{11}$$C_8\times D_{11}$$C_{11}:\SD_{16}$$C_{11}\times \SD_{16}$$C_{88}:C_2$$Q_8:D_{11}$$C_2\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_4\times F_{11}$