Properties

Label 5280.z.1320.e1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{15}cd^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{40}$
Normalizer:$C_{10}\times \SD_{16}$
Normal closure:$Q_8\times D_{11}$
Core:$C_2$
Minimal over-subgroups:$C_{11}:C_4$$C_{20}$$C_2\times C_4$$D_4$$Q_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$0$
Projective image$S_4\times F_{11}$