Properties

Label 5280.r.2640.b1
Order $ 2 $
Index $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rrrr} 10 & 10 & 4 & 5 \\ 0 & 7 & 1 & 4 \\ 2 & 10 & 4 & 1 \\ 5 & 2 & 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times D_{12}$
Normalizer:$C_2\times D_{12}$
Normal closure:$\SL(2,11):C_2$
Core:$C_1$
Minimal over-subgroups:$D_5$$C_6$$S_3$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$330$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$\SL(2,11):C_2^2$