Properties

Label 5280.l.88.h1.b1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{5}c^{132}, a^{2}, c^{176}, bc^{144}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times D_6$
Normal closure:$D_{12}\times F_{11}$
Core:$C_3$
Minimal over-subgroups:$S_3\times F_{11}$$C_{10}\times D_6$
Maximal under-subgroups:$C_{30}$$C_5\times S_3$$C_5\times S_3$$C_2\times C_{10}$$D_6$
Autjugate subgroups:5280.l.88.h1.a1

Other information

Number of subgroups in this conjugacy class$44$
Möbius function$0$
Projective image$C_{24}:C_2\times F_{11}$