Properties

Label 5280.l.8.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times F_{11}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, c^{176}, a^{2}, c^{132}, c^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{24}:C_2\times F_{11}$
Minimal over-subgroups:$C_{12}\times F_{11}$$D_6\times F_{11}$$C_3:C_4\times F_{11}$
Maximal under-subgroups:$C_{11}:C_{30}$$C_3\times F_{11}$$C_3\times F_{11}$$C_2\times F_{11}$$C_3\times D_{22}$$C_2\times C_{30}$

Other information

Möbius function$0$
Projective image$D_{12}\times F_{11}$