Subgroup ($H$) information
| Description: | $S_3\times D_{11}$ |
| Order: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Generators: |
$a^{5}, c^{176}, c^{24}, b$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{24}:C_2\times F_{11}$ |
| Order: | \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{66}.C_{10}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| $W$ | $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $C_{24}:C_2\times F_{11}$ |