Properties

Label 5280.l.264.b1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}bc^{144}, a^{2}, c^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$D_4\times C_{10}$
Normal closure:$C_{132}:C_{10}$
Core:$C_2$
Minimal over-subgroups:$C_{22}:C_{10}$$S_3\times C_{10}$$C_2^2\times C_{10}$$C_5\times D_4$$C_5\times D_4$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$0$
Projective image$D_{12}\times F_{11}$