Subgroup ($H$) information
| Description: | $Q_8\times C_{11}$ |
| Order: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Generators: |
$a, c^{12}, c^{66}, c^{33}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{12}.D_{22}$ |
| Order: | \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \) |
| Exponent: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{66}.C_{10}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{10}\times S_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $1$ |
| Projective image | $S_3\times D_{22}$ |