Properties

Label 528.96.6.c1.a1
Order $ 2^{3} \cdot 11 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times C_{11}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a, c^{12}, c^{66}, c^{33}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{12}.D_{22}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_{10}\times S_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(44\)\(\medspace = 2^{2} \cdot 11 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$Q_8\times D_{11}$
Normal closure:$C_{33}:Q_8$
Core:$C_{44}$
Minimal over-subgroups:$C_{33}:Q_8$$Q_8\times D_{11}$
Maximal under-subgroups:$C_{44}$$C_{44}$$C_{44}$$Q_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times D_{22}$