Properties

Label 528.96.22.d1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:Q_8$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, c^{33}, c^{66}, c^{88}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{12}.D_{22}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6:Q_8$
Normal closure:$C_{33}:Q_8$
Core:$C_{12}$
Minimal over-subgroups:$C_{33}:Q_8$$C_6:Q_8$
Maximal under-subgroups:$C_{12}$$C_3:C_4$$C_3:C_4$$Q_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$S_3\times D_{22}$