Properties

Label 528.96.176.a1.a1
Order $ 3 $
Index $ 2^{4} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(3\)
Generators: $c^{88}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{12}.D_{22}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $Q_8\times D_{11}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times D_{11}$
Normalizer:$C_{12}.D_{22}$
Complements:$Q_8\times D_{11}$
Minimal over-subgroups:$C_{33}$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{12}.D_{22}$