Properties

Label 528.35.48.a1.a1
Order $ 11 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(11\)
Generators: $b^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{33}:Q_{16}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_3\times Q_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_8:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{44}.(C_2^4\times C_{10})$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(704\)\(\medspace = 2^{6} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{264}$
Normalizer:$C_{33}:Q_{16}$
Complements:$C_3\times Q_{16}$
Minimal over-subgroups:$C_{33}$$C_{22}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{33}:Q_{16}$